Numerical Simulation on the influence of solidification rate on mechanical properties of semi-crystalline thermoplastic composites

نویسندگان

  • Chol-Ho Hong
  • Byeong Sam Kim
چکیده

As with the consolidation time, the cooling rate applied during the solidification stage of the composite processing cycle influences the total processing cycle time, as well as the mechanical performance. By controlling the solidification rate, changes in the matrix morphology and crystallinity can be achieved, and hence different mechanical properties may be obtained. Control of the solidification rate is also important in order to control the level and distribution of internal stresses generated within the part during processing. These stresses may cause the composite to warp, resulting in unsatisfactory part quality, and can lead to premature failure of the part, necessitating costly repair or replacement. Therefore, this chapter emphasises the necessity of controlling the solidification rate, and examines its influence on the mechanical properties and the dimensional stability of composites based on CF/PA12 commingled yarns. The influence of solidification rate on crystallinity, morphology, and resulting mechanical properties of thermoplastic composites has become the subject of many research investigations over the last decade. Transverse tensile tests were performed to examine the influence of the solidification rate on the mechanical properties of the CF/PA12 laminates based on commingled yarns. In order to study the influence of solidification rate on interlaminar fracture toughness, mode I interlaminar fracture tests were carried out using the double cantilever beam (DCB) method, Interlaminar fracture toughness. Key-Words: Thermoviscoelasticity, Finite element modeling, semi-crystalline, Interlaminar fracture, Crystallinity, Composite processing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of a Hybrid Nanocomposite Containing Ca-CO3 and Short Glass Fibers Subjected to Tensile Loading

The tensile properties of multiscale, hybrid, thermoplastic-based nanocomposites reinforced with nano-CaCO3 particles and micro–short glass fibers (SGF) were predicted by a two-step, three-dimensionalmodel using ANSYS finite element (FE) software. Cylindrical and cuboid representative volume elements were generated to obtain the effective behavior of the multiscale hybrid composites. In the fir...

متن کامل

Synthesis and Characterization of Polyamide-66/Calcium Carbonate Composites

Polyamide-66(PA66)/CaCO3 micro- and nano-composites were prepared using a polymer solution method at filler loading of 0, 1, 2 and 3 weight percent. Nano-size of CaCO3 was synthesized by micro-emulsion technique. The material was characterized by XRD, SEM, FTIR and UV-VIS techniques. XRD results of composites suggested that CaCO3 particles are found in the amorphous phase of the semi-crystallin...

متن کامل

Comparison of Compressive Properties Between Va-cuum Infusion and Hand Lay-Up Method Toward Bal-sa Core Sandwich Composites

The aim of this work is to evaluate the influence of fabrication methods on the com-pressive properties of sandwich composites using both experimental work and numerical simulations. Two types of sandwich composites with E-glass/Kevlar/polyester resin facings and End-grain balsa wood as core have been produced by vacuum infusion processing (VIP) and hand-lay up (HL) method. Compression tests on...

متن کامل

Pretreatment Effect on the Properties of Electroless Nano - Crystalline Nickel Phosphorous Coating

the influence of mechanical polishing pre-treatments on steel substrates is investigated in terms of microstructure, deposition rate, adhesion, mechanical and corrosion properties of electroless Ni-P nanocoating with 9-10% wt. of P content. XRD analysis of Ni-P coatings demonstrated the nanocrystalline structure of coating with the grain size of 39 nm. Results showed that pretreatment of substr...

متن کامل

Investigating the effects of chemical modification of clay nanoparticles on thermal degradation and mechanical properties of TPU/nanoclay composites

Thermoplastic polyurethane (TPU)/clay nanocomposites were prepared via a melt-compounding method using ester type TPU and two different modified organoclays (Cloisite 30B and Cloisite 15A) in different contents. The Effects of the chemical structure and content of the nanoclays on the thermal degradation and mechanical properties of TPU were also investigated. The effect of structural modificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017